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For a weight w with some conditions near the origin the limit of the error

where Pw.e! is the weighted best L~.s approximation of the function f in a class
t~.w, analogous to those considered by Calderon and Zygmund, is characterized.
The limit is taken in a norm depending on e and, with additional assumptions on
the weight, in a fixed norm. t 1984 Academic Press. Inc.

1. INTRODUCTION

The interest in the study of local best approximation by algebraic
polynomials has recently revived, see, for instance, [2, 7]. Previous papers
related to similar problems are [3,4]. In [4] the authors study the limit
behavior of the error j - Ps' where j is a real analytic function in a
neighborhood of the origin and Psis the best Tchebycheff approximation
with weight w in an e-neighborhood of zero. For w analytic, w(O)"* 0 and
j(m + 1) (0) "* 0 (where m is the degree of the approximating polynomials),
they proved that the error, if suitably normalized, tends uniformly to the
Tchebycheff polynomials of degree m + 1. The proof given there requires a
clever lemma (see Lemma 1.6, [4]) that cannot be adapted to other L P

norms or to higher dimensions.
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In this paper we show some results on the convergence of the error and its
LP norm. Those results are contained in Theorems I and 2. We require a
smoothness condition on the function I similar to those considered by
Calderon and Zygmund in [I]. We assume a prescribed behavior of the
average of the weight function w near the origin, see (2.1). This allows us to
consider as a weight function, for instance, negative and fractionary powers.
In Theorem 1 we study the convergence using norms depending on e,
whereas in Theorem 2 we consider a fixed norm instead. We point out, see
'Remark 4, that our method also gives the results obtained in [4].

2. NOTATION AND RESULTS

We shall consider functions defined on IR n
• We say that a function w is a

weight if it is non-negative and locally integrable. Given a positive real
number e, we write

Wee) := J wet) dt;
III" e

we always assume W(e) > O. Given a function I and 1 <P < 00 we denote

lip

IlfII(p,w,e) := (w(e) -I f I/(t)IP wet) dt) .
III "e

We say that/E L~,e if IlfII(p,w,e) < 00. Throughout this paper we consider as
approximating class the space nm of algebraic polynomials with real coef­
ficients of degree less than or equal to m. It is well known that given IE L~,e

there exists an unique Pw,JE nm such that

III-Pw,JII(p,w,e) = )~!m III- PII(p,w,e)'

The polynomial Pw,J is called the best approximation off.
We shall be interested in the asymptotic behavior, for e tending to zero, of

the following errors

EJ:= e-m-I(f(et) - Pw,J(et))

NJ:= IIEJlb,we,l)'

where wit) = enW(t:)-1 w(et). Note that W e(1) = 1. The natural space for
the study of these errors seems to be t~,w' Le" the class of functions/E L~,I

such that there exists Tm E nm satisfying

III- Tmll(p,w,e) = o(em).

These classes are similar to those introduced in [1].
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We shall consider radial weight functions w satisfying the condition

There exist two real numbers A and fJ such that A >0, fJ + n >°
and

183

W(e) = Aell+
n [1 +0(1)], for e tending to zero. (2.1 )

It is clear that given w there exists at most one pair of numbers (A, fJ) such
that condition (2.1) holds. For a weight w satisfying these hypotheses we
shall prove the uniqueness of the polynomial Tm associated to a function
fE t~.w' Typical examples of such weights are given by w(t)= Itl"', with
a + n > 0, finite linear combinations of weights of this type and some infinite
linear combinations. Given a weight w satisfying (2.1) we denote

w(t):= w;;l(fJ +n) Itlll,

where W n stands for the surface area of the unit ball in IR n
•

It follows at once that t~.w c t'f.w if I~ m and p ~ q. Thus, if fE t~+ I,ll'

then the function l'f> m+ I :=T m+ 1 - Tm is well defined and homogeneous of
degree m + 1.

Our main result is contained in the next theorem.

THEOREM 1. Let w be a weight satisfying (2.1) and 1 <P < 00. Then, if
fE t~+ I,ll' it follows that

Limo NJ = IIl'f>m+ 1- P;;..,Il'f>m+ 111(p,;;..,IP (2.2)
6->

For a radial weight such that for A >°and fJ > -n

w(x) = A Ixl ll (1 +0(1»

(2.3)

(2.4)

holds, it is immediate that it satisfies condition (2.1). In this case, wit) =
Itl ll (1 +0(1». Therefore, the norm appearing in (2.3) can be replaced by a
fixed weight It Ill. On the other hand it is easy to see the existence of a weight
for which (2.1) is true but (2.4) does not hold. Thus, it is convenient to find
conditions that allow us to replace the norm depending on e by a norm with
a fixed weight. To this end we consider some classes of weights.

We say that a weight w belongs to a(r), 1 < r < 00, if there exists a
positive constant C such that

(e-mf W(t)dt) (e-mf w(t)-r'!rdt)r!r'~c, (2.5)
It I <6 It I<6

for °< e < 1 and r' = r/(r - 1).



184 MAciAS AND z6

The class ah(s), 1 < s < 00, is defined to be the class of the weights w
satisfying

( )

Ih

e -n J w(t)S dt ~ Ce -n J w(t) dt,
III <;;. 111<;;.

(2.6)

for 0 < e < 1 and some constant C.
It is easy to check that (2.5) and (2.6) hold for -n <fJ < n(r - 1) and

1 < s < 00 if the weight w satisfies (2.4). The classes a(r) are a kind of local
analog of the classes A r of Muckenhoupt. It is known that if wEAn then
there exists s such that w satisfies (2.6) for every ball, see for instance the
survey article [5]. The difference between a(r) and A r is illustrated by the
following example. Let a~:= 2- n

-
23 + i2- 2n

, where i= 1, -1 and n a non­
negative integer. Define

\4

1

- n

w(x):= I if a;;l<x<a~

if a~ ~ x ~ a;;~ I .

It can be readily verified that w satisfies (2.1) but not (2.4). Moreover w
belongs to the classes a(r) and ah(s) for 1 < r, s < 00, but w does not belong
to any Ap' 1 <p < 00. In fact, if w E Ap for some p, there exists C >0 such
that

J w(t) dt ~ C J w(t) dt,
Ix-II<;;2. Ix-II<;;.

for every e >0 and every x (see [5 D. In order to see that the above
inequality does not hold it suffices to consider x = 2 -n • 3/4 and e = 2 -2

n
•

We can now state the result concerning the replacement of the norm
depending on e by a fixed one.

THEOREM 2. Let w be a weight satisfying (2.1) and assume that for
some 1 < r, s < 00, w E a(r) n ah(s). Let u be a weight belonging to ah(s),
consider fE t~+ I,w with 1 <P < 00 and set q = pls'r. Then EJ converges to
(/Jm + I - P1f,I (/J m + I in the norm L ~.I when e tends to zero, where the error
curve and the polynomials of best approximation are obtained with respect to
the norm LP and weight w.

We shall make some comments on the range of validity and extensions of
these Theorems.

Remark 1. Theorem 1 remains valid if p = 1, if we restrict ourselves to
functions of one real variable which are continuous in a neighborhood of
zero (for such functions the best approximation polynomial is unique [6])
the proof of this fact is similar to that of the case 1 <p < 00. I
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Remark 2. For p = co, we consider again continuous functions of one
variable. Let

Ilfll(oo w e) := max If(x) w(x)1 W(e)-I,
, , Ixl';; e

where W(e) = max 1xl ,;; e w(x). Let us assume that w satisfies (2.4) for some
/l ~ O. Moreover, suppose that for fthe following smoothness property holds:
there exists T E nm + I such that

max If(x) - T(x)llxll! = o(em+1+1!).
Ixl';; e

Note that in the condition above we can interchange Ixll! by w(ex) W(e)-],
Then, if Q(t) = tm+], we have

II
f(m+ 1)(0) II

Li~ EJ- ( + 1)' (Q-PW,]Q) =0.
e~ m. (oo,lxl~,])

The proof of the fact follows the lines of the proof of Theorem I, but it is
somehow simpler. I

Remark 3. Let us suppose f in em + I (/), where 1= [-1, 1]. Let w be
continuous and satisfying the conditions of Theorem 2. It is known that there
exist m + 1 points xj(e); xo(e) <x](e) < ... <xm(e) in the closed interval
[-e,e], such thatf(xj(e))=Pw,e/(xj(e)). If Q(t)=tm+l there exist m+ 1
points X o< Xl < '" <x m ' laying in I, uniquely determined by tV and the LP

norm, 1 <p < co, such that Q(xj)=Pw,IQ(XJ In particular, we have

With the further assumption that f(m+ 1)(0) * 0, it follows

xj(e) = e(xi + 0(1)),

In fact, according to Theorem 2,

i=O,I,... ,m.

II
f(m+ 1)(0) II

~~~ EJ- (m + I)! (Q-PW,]Q) _ =0.
(q,w,l)

Using the formula for the remainder of the Lagrange interpolation
polynomial, we have

640/42/2-6
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where ~e E (-e, e). Or else

MAciAS AND z6

E f(t) =f(m+ I)(~e) (t _ Xo(e)) (t _ xl(e)) ... (t _ xm(e)) .
e (m + I)! e e e

Therefore,

~~~ (t _ Xo~e)) (t _ XI~e)) ... (t _ x~(e))

= (t - xo)(t - XI) ... (t - xm).

Since le-Ixi(e)1 ~ 1, there exists a subsequence {ed, such that eklx;(ek)
tends to Xi; Xi ~ Xi +I' From the equality

it follows that Xi = Xi' This implies the statement that x;(e) = e(x; +0(1 )).
This Remark remains true for p = 00, if we assume the hypotheses of
Remark 2. I

Remark 4. Given a function f and a weight w, both of them continuous
in [-1,1], it is well known that there exists a TchebychefT alternation, that is
a sequence of m + 2 points {xi(e)}~=+ol contained in [-e, e], such that

assume the value of Ilf - Pw,JII(oo.w.e) in an alternating fashion. We can take
xi(e) <x;+ I(e). Besides, it is clear that there exists at most one TchebychefT
alternation -1 ~ X o < XI < ... < xm+I ~ 1, for Q - PW•IQ. Following the
lines of [4], we consider the error

e f(t):= [f(et) - Pw,J(et)] . ( w(x;(e))) -I,

e f(xi(e)) - Pw,J(xi(e)) W(e)

where i is equal to 0 or 1 and it is chosen in such a way as to make the
denominator positive. It turns out that eJ(t) is well defined if f is not a
polynomial of degree m restricted to the interval [-e, e]. Then, if fE C m + I
andf(m+I)(O):;i:O, the error eJtends to (Q-Pw,IQ)/IIQ-Pw,IQII(oo,w,1) in
the norm L 'f). I. In fact, as we pointed out in Remark 2, E J tends to
f(m+I)(O)(Q-Pw,IQ)/(m+ I)! in L'f:.I' On the other hand there exists a
subsequence led tending to zero, which defines the numbers Xi =
lim k-> 00 x;(ek)ek l. Therefore
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From this it follows that {xilr=+ol is a Tchebycheff alternation for Q - Pw,1 Q.
From the uniqueness we obtain that the Lim,~o xi(e) e-I exists and is equal
to Xi' This proves the claim. I

3. PROOF OF THE RESULTS

We begin by observing some simple facts. Let r be defined by
f'(t) :=f(et), then

(3.1 )

From this and the uniqueness of the polynomial of best approximation, it
follows

(Pw,J)'=Pw"J'·

Also, Pw,' satisfies the homogeneity property:

(3.2)

Pw"Af=).,Pw,J, )., E IR. (3.3 )

Let E be a real vector space. Assume that there exists a family of norms
II . II" for 0 < e < 1, satisfying

Lim Ilfll, = Ilfllo'
,~o

for fEE; (3.4 )

there exists a C greater than zero and a fixed norm II . II such that

C-111fll < Ilfll,< Cllfll,

for every f in a finite dimensional subspace M.

Under the conditions above, we have:

LetfE E and let PJbe an element of M such that

IIP-PJlle= inf{llf-PII, :PE M}.

(3.5)

Assume Pof is uniquely determined. Then, PJ converges to Pof
when e tends to zero. (3.6)

For the proof of Theorem 1, we need the following lemma.

LEMMA 1. Let w be a weight satisfying condition (2.1). Let P E nm and
1 <p < 00. Then

IIIPII(p.w,,1) -IIPII(p,w,1) 1< 0(1) IIPII(p,w,IP

where 0(1) depends on n, m, p and the weight wanly.
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Proof If we denote by
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f(P) :=f IP(Pt)IP dt,
111=1

then

I e := IIPllfp,we,1) = enW(e)-1 f IP(t)IP w(et) dt
111<;;1

= W(e)-I j"pn-Iw(p)f(Pfe)dp.
o

An integration by parts gives

·e
Ie = (WnW(e))-I W(p)f(pfe)lg - (ewnW(e))-I j W(P)f' (pfe) dp

o

= w; 1(1) - (ewnW(e)) -I Arpll+ ".f'(pfe ) dp
o

+ (eW(e))-1 J: o(pll+n)f'(pfe)dp

Another integration by parts lead us to

J 2 = -(ewnW(e))-I ef(pfe)Apll+nlg

+ (WnW(e))-I A(f3 + n) f'f(Pfe)pll+n-l dp
o

= -JI(1 +0(1)) +w;l(f3 +n) rf(P)pll+n-1 dp· (1 +0(1)).
o

Then

On the other hand

f'(P) = p f !P(Pt)IP-I sg(P(Pt))(VP)(pt) . t dt.
111=1

Using the Markov inequality, we have

where 0 ~ p < 1 and the constant C does not depend on P.
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Since IIPII ~ c IIPII(p,w,IP for some C = C(n, m,p, w), we get

IJ31~ 0(1) IIPllfp,w,I)'

Similarly

Collecting estimates we obtain

lIe -IIPllfp,w, I) I= 10(1) J I +0(1) IIPllfp,w,1) +J31
~ 0(1) IIPllfp,w,I)' I

189

From Lemma 1 it follows immediately the equivalence among the norms
II . II(p,we,1) and II . II(p,w,1) on the class nm

, independently of 6. For future
references we establish

Let P E nm• Then, there exists a constant C independent of P and
6 such that

(3.7)

where

IIPII := max IP(t)l·
111<1

This last remark allows us to show that given a function f in t~,w the
polynomial Tm E nm such that

is unique. In fact, calling P the difference between two such polynomials,
then IIPII(p,w,e) = 0(6

m). But, taking into account (3.1) and (3.7) we have
IIPII = 0(6

m
), which implies P = o.

Proof of Theorem 1. Since (/>m+ I (x) := Tm+I(X) - Tm(x) = Llal=m+ 1

Caxa, is homogeneous of degree m + 1 and using (3.2) and (3.3) it follows

In order to proof the convergence of this error, we observe that by (3.7)
11'II(p,we,l) and 11,11 considered on the class nm+1are equivalent indepen­
dently of 6. Besides, by Lemma 1, IIPII(p,we,1) converges to IIPlb,w,1) when 6

tends to zero. Therefore by using (3.6) with E = nm + I and M = nm we have
IIPwe,1 (/>m+1 -PW,I (/>m+111 goes to zero for e tending to zero. Hence

(3.8)

640/42/2-7



190 MAciAS AND z6

Setting R m+ I =1- Tm+ 1 and since N e is sublinear, we get

From (3.8), using that NeTm+1= N/Pm+1and

NeR m+, ~ e-m-'II/_ Tm+111(p,w,e) = 0(1),

we obtain

which proves (2.2).
In order to show the second part of the theorem we write

EJ= e-m-I(r- T~(f» - He'

where He:= e-m-IPwe,l(r- T~). We have the following direct estimate for
He

IIHell(P,we,1) <- NJ+e- m- I III- TmII(p,w.e)

<-2e-m-lll/-Tm+,II(p,w,el+2 ~ ICal·
lal=m+ 1

Since IE t~+I,W' we have that IIHell(p,we,1) is bounded in e. By (3.7) IIHel1 is
also bounded in e. Therefore, there exists a subsequence ek' tending to zero,
and a polynomial HE nm such that H", tends to H. We shall show that He
converges itself, by proving that the polynomial H does not depend on the
particular subsequence chosen. In fact, from the equality

it follows that

Lim IIEe 1- (f/Jm+ 1 - H)II(p w I) = O.
k-+O k , Bk'

Now, for P E nm+ I, we have

II EJII(p,we,1) = e -m-I Ilr - T'/n(f) - PWe' I (fe - T~(f))ll(p,We,1)

&. e- m- I II Ie _ Te(f) _ em+'pil
"'" m (p,W e,!)

= II e-m-l(fe - T;'+ l(f» + f/J m+ 1 - PII(p,we,!)·

From this, (3.9) and Lemma 1 we get

II f/Jm+ 1 - HII(p,w,,) <-II f/Jm+ 1 - PII(p,w,I)'

(3.9)



WEIGHTED BEST LOCAL LP APPROXIMATION 191

The inequality above assures us the existence of the limit of He and that it is
equal to PW,1 (/>m+l' Therefore (3.9) it is also true when the limit is taken for
e going to zero. I

The proof of theorem 2 is an easy consequence of the following lemma.

LEMMA 2. Let u and w be weights such that both of them belong to ah(s)
for some 1 < s < 00. Moreover, suppose wE a(r) for some 1 < r < 00. If
1 <p < 00 and q = p/s'r, then

Ilfll(q,u,e) ~ C Ilfll(p,w,ep

for 0 <e < 1 and a constant C independent off and e.

Before going into the details of the proof we note that Lemma 2 allows us
to transfer the smoothness property with weight w to an analogous property
with weight u. More precisely, with the notation of Lemma 2, iffE t~,w then
fE t~,u'

Proof Denote/:= Ilflliq,u,ep then

/ ~ Ilflliq,w,el + r Ifl
q IW(e)~l wet) - U(e)~l u(t)1 dt

. III <e

We estimate /2' by using Holder inequality

From the fact that wand u satisfy (2.6), it results that

By (2.5) and Holder inequality, we get

/3 ~ Ilfllip,w,el . (J (W(e)-l w(t»~r'lrdt) lls'r'
III <e

~ C Ilfllip,w,e) . enls '.

Therefore,

12 ~ C Ilfllip,w,e)'

Since Ilfll(q,w,e) is less than or equal to Ilf (p,w,eP the lemma is proved. I
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Proof of Theorem 2. From the proof of Theorem 1, we can write the
equality

EJ - tP m+ 1 +PW.1tP m+ 1 = [;-m-IR~+ 1(1) +PW,ltP m+ J - He'

Since wE ah(s) for any s, 1 < s < 00, and He converges to P""ltPm+ l' this
equality and Lemma 2 yield the Theorem. I
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