Weighted Best Local L^p Approximation

R. A. MACÍAS

Programa Especial de Matematica Aplicada, Conicet, Güemes 3450, C.C. 91, 3000 Santa Fe, Argentina

AND

F. Zó

Programa Especial de Matematica Aplicada, Conicet, Güemes 3450, C.C. 91, 3000 Santa Fe, Argentina, and Departamento de Matematica, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina

> Communicated by Antoni Zygmund Received September 26, 1983

For a weight w with some conditions near the origin the limit of the error

$$\varepsilon^{-n-1}{f(\varepsilon t) - P_{w,\varepsilon}f(\varepsilon t)},$$

where $P_{w,\varepsilon}f$ is the weighted best $L^p_{w,\varepsilon}$ approximation of the function f in a class $t^p_{m,w}$, analogous to those considered by Calderón and Zygmund, is characterized. The limit is taken in a norm depending on ε and, with additional assumptions on the weight, in a fixed norm. \mathbb{C} 1984 Academic Press, Inc.

1. INTRODUCTION

The interest in the study of local best approximation by algebraic polynomials has recently revived, see, for instance, [2, 7]. Previous papers related to similar problems are [3, 4]. In [4] the authors study the limit behavior of the error $f - P_e$, where f is a real analytic function in a neighborhood of the origin and P_e is the best Tchebycheff approximation with weight w in an ε -neighborhood of zero. For w analytic, $w(0) \neq 0$ and $f^{(m+1)}(0) \neq 0$ (where m is the degree of the approximating polynomials), they proved that the error, if suitably normalized, tends uniformly to the Tchebycheff polynomials of degree m + 1. The proof given there requires a clever lemma (see Lemma 1.6, [4]) that cannot be adapted to other L^p norms or to higher dimensions.

MACÍAS AND ZÓ

In this paper we show some results on the convergence of the error and its L^p norm. Those results are contained in Theorems 1 and 2. We require a smoothness condition on the function f similar to those considered by Calderón and Zygmund in [1]. We assume a prescribed behavior of the average of the weight function w near the origin, see (2.1). This allows us to consider as a weight function, for instance, negative and fractionary powers. In Theorem 1 we study the convergence using norms depending on ε , whereas in Theorem 2 we consider a fixed norm instead. We point out, see Remark 4, that our method also gives the results obtained in [4].

2. NOTATION AND RESULTS

We shall consider functions defined on \mathbb{R}^n . We say that a function w is a weight if it is non-negative and locally integrable. Given a positive real number ε , we write

$$W(\varepsilon):=\int_{|t|\leqslant \varepsilon}w(t)\,dt;$$

we always assume $W(\varepsilon) > 0$. Given a function f and 1 we denote

$$\|f\|_{(p,w,\varepsilon)} := \left(W(\varepsilon)^{-1} \int_{|t| \leq \varepsilon} |f(t)|^p w(t) dt\right)^{1/p}.$$

We say that $f \in L^p_{w,\varepsilon}$ if $||f||_{(p,w,\varepsilon)} < \infty$. Throughout this paper we consider as approximating class the space π^m of algebraic polynomials with real coefficients of degree less than or equal to *m*. It is well known that given $f \in L^p_{w,\varepsilon}$ there exists an unique $P_{w,\varepsilon}f \in \pi^m$ such that

$$\|f - P_{w,\varepsilon}f\|_{(p,w,\varepsilon)} = \inf_{P \in \pi^m} \|f - P\|_{(p,w,\varepsilon)}$$

The polynomial $P_{w,\varepsilon} f$ is called the best approximation of f.

We shall be interested in the asymptotic behavior, for ε tending to zero, of the following errors

$$\begin{split} E_{\varepsilon}f &:= \varepsilon^{-m-1}(f(\varepsilon t) - P_{w,\varepsilon}f(\varepsilon t))\\ N_{\varepsilon}f &:= \|E_{\varepsilon}f\|_{(p,w_{\varepsilon},1)}, \end{split}$$

where $w_{\varepsilon}(t) = \varepsilon^n W(\varepsilon)^{-1} w(\varepsilon t)$. Note that $W_{\varepsilon}(1) = 1$. The natural space for the study of these errors seems to be $t_{m,w}^p$, i.e., the class of functions $f \in L_{w,1}^p$ such that there exists $T_m \in \pi^m$ satisfying

$$\|f - T_m\|_{(p,w,\varepsilon)} = o(\varepsilon^m).$$

These classes are similar to those introduced in [1].

We shall consider radial weight functions w satisfying the condition

There exist two real numbers A and β such that A > 0, $\beta + n > 0$ and

$$W(\varepsilon) = A\varepsilon^{\beta+n}[1+o(1)], \quad \text{for } \varepsilon \text{ tending to zero.}$$
(2.1)

It is clear that given w there exists at most one pair of numbers (A, β) such that condition (2.1) holds. For a weight w satisfying these hypotheses we shall prove the uniqueness of the polynomial T_m associated to a function $f \in t^p_{m,w}$. Typical examples of such weights are given by $w(t) = |t|^{\alpha}$, with $\alpha + n > 0$, finite linear combinations of weights of this type and some infinite linear combinations. Given a weight w satisfying (2.1) we denote

$$\tilde{w}(t) := \omega_n^{-1}(\beta + n) |t|^{\beta},$$

where ω_n stands for the surface area of the unit ball in \mathbb{R}^n .

It follows at once that $t_{m,w}^p \subset t_{l,w}^q$ if $l \leq m$ and $p \geq q$. Thus, if $f \in t_{m+1,w}^p$ then the function $\Phi_{m+1} := T_{m+1} - T_m$ is well defined and homogeneous of degree m + 1.

Our main result is contained in the next theorem.

THEOREM 1. Let w be a weight satisfying (2.1) and $1 . Then, if <math>f \in t^p_{m+1,w}$ it follows that

$$\lim_{\varepsilon \to 0} N_{\varepsilon} f = \| \boldsymbol{\Phi}_{m+1} - P_{\tilde{w},1} \boldsymbol{\Phi}_{m+1} \|_{(p,\tilde{w},1)}, \qquad (2.2)$$

$$\lim_{\varepsilon \to 0} \|E_{\varepsilon} f - (\Phi_{m+1} - P_{\tilde{w}, 1} \Phi_{m+1})\|_{(p, w_{\varepsilon}, 1)} = 0.$$
(2.3)

For a radial weight such that for A > 0 and $\beta > -n$

$$w(x) = A |x|^{\beta} (1 + o(1))$$
(2.4)

holds, it is immediate that it satisfies condition (2.1). In this case, $w_{\varepsilon}(t) = |t|^{\beta} (1 + o(1))$. Therefore, the norm appearing in (2.3) can be replaced by a fixed weight $|t|^{\beta}$. On the other hand it is easy to see the existence of a weight for which (2.1) is true but (2.4) does not hold. Thus, it is convenient to find conditions that allow us to replace the norm depending on ε by a norm with a fixed weight. To this end we consider some classes of weights.

We say that a weight w belongs to a(r), $1 < r < \infty$, if there exists a positive constant C such that

$$\left(\varepsilon^{-m}\int_{|t|\leqslant\varepsilon}w(t)\,dt\right)\left(\varepsilon^{-m}\int_{|t|\leqslant\varepsilon}w(t)^{-r'/r}\,dt\right)^{r'/r'}\leqslant C,\tag{2.5}$$

for $0 < \varepsilon < 1$ and r' = r/(r-1).

The class ah(s), $1 < s < \infty$, is defined to be the class of the weights w satisfying

$$\left(\varepsilon^{-n}\int_{|t|\leqslant\varepsilon}w(t)^{s}\,dt\right)^{1/s}\leqslant C\varepsilon^{-n}\int_{|t|\leqslant\varepsilon}w(t)\,dt,\tag{2.6}$$

for $0 < \varepsilon < 1$ and some constant *C*.

It is easy to check that (2.5) and (2.6) hold for $-n < \beta < n(r-1)$ and $1 < s < \infty$ if the weight w satisfies (2.4). The classes a(r) are a kind of local analog of the classes A_r of Muckenhoupt. It is known that if $w \in A_r$, then there exists s such that w satisfies (2.6) for every ball, see for instance the survey article [5]. The difference between a(r) and A_r is illustrated by the following example. Let $a_n^i := 2^{-n-2}3 + i2^{-2n}$, where i = 1, -1 and n a non-negative integer. Define

$$w(x) := \begin{cases} 4^{-n} & \text{if } a_n^{-1} < x < a_n^1 \\ 1 & \text{if } a_n^1 \le x \le a_{n-1}^{-1}. \end{cases}$$

It can be readily verified that w satisfies (2.1) but not (2.4). Moreover w belongs to the classes a(r) and ah(s) for $1 < r, s < \infty$, but w does not belong to any A_p , $1 . In fact, if <math>w \in A_p$ for some p, there exists C > 0 such that

$$\int_{|x-t|\leqslant 2\varepsilon} w(t) \, dt \leqslant C \int_{|x-t|\leqslant \varepsilon} w(t) \, dt,$$

for every $\varepsilon > 0$ and every x (see [5]). In order to see that the above inequality does not hold it suffices to consider $x = 2^{-n} \cdot 3/4$ and $\varepsilon = 2^{-2^n}$.

We can now state the result concerning the replacement of the norm depending on ε by a fixed one.

THEOREM 2. Let w be a weight satisfying (2.1) and assume that for some 1 < r, $s < \infty$, $w \in a(r) \cap ah(s)$. Let u be a weight belonging to ah(s), consider $f \in t_{m+1,w}^p$ with 1 and set <math>q = p/s'r. Then $E_{\varepsilon}f$ converges to $\Phi_{m+1} - P_{\tilde{w},1}\Phi_{m+1}$ in the norm $L_{u,1}^q$ when ε tends to zero, where the error curve and the polynomials of best approximation are obtained with respect to the norm L^p and weight w.

We shall make some comments on the range of validity and extensions of these Theorems.

Remark 1. Theorem 1 remains valid if p = 1, if we restrict ourselves to functions of one real variable which are continuous in a neighborhood of zero (for such functions the best approximation polynomial is unique [6]) the proof of this fact is similar to that of the case 1 .

Remark 2. For $p = \infty$, we consider again continuous functions of one variable. Let

$$||f||_{(\infty,w,\varepsilon)} := \max_{|x| \leq \varepsilon} |f(x) w(x)| W(\varepsilon)^{-1},$$

where $W(\varepsilon) = \max_{|x| \le \varepsilon} w(x)$. Let us assume that w satisfies (2.4) for some $\beta \ge 0$. Moreover, suppose that for f the following smoothness property holds: there exists $T \in \pi^{m+1}$ such that

$$\max_{|x|\leq \varepsilon} |f(x) - T(x)| |x|^{\beta} = o(\varepsilon^{m+1+\beta}).$$

Note that in the condition above we can interchange $|x|^{\beta}$ by $w(\varepsilon x) W(\varepsilon)^{-1}$. Then, if $Q(t) = t^{m+1}$, we have

$$\lim_{\varepsilon \to 0} \left\| E_{\varepsilon} f - \frac{f^{(m+1)}(0)}{(m+1)!} \left(Q - P_{\tilde{w},1} Q \right) \right\|_{(\infty,|x|^{\beta},1)} = 0.$$

The proof of the fact follows the lines of the proof of Theorem 1, but it is somehow simpler. \blacksquare

Remark 3. Let us suppose f in $C^{m+1}(I)$, where I = [-1, 1]. Let w be continuous and satisfying the conditions of Theorem 2. It is known that there exist m + 1 points $x_i(\varepsilon)$; $x_0(\varepsilon) < x_1(\varepsilon) < \cdots < x_m(\varepsilon)$ in the closed interval $[-\varepsilon, \varepsilon]$, such that $f(x_i(\varepsilon)) = P_{w,\varepsilon}f(x_i(\varepsilon))$. If $Q(t) = t^{m+1}$ there exist m + 1 points $x_0 < x_1 < \cdots < x_m$, laying in I, uniquely determined by \tilde{w} and the L^p norm, $1 , such that <math>Q(x_i) = P_{\tilde{w},1}Q(x_i)$. In particular, we have

$$Q(t) - P_{\tilde{w},1}Q(t) = (t - x_0)(t - x_1) \cdots (t - x_m).$$

With the further assumption that $f^{(m+1)}(0) \neq 0$, it follows

$$x_i(\varepsilon) = \varepsilon(x_i + o(1)), \qquad i = 0, 1, \dots, m.$$

In fact, according to Theorem 2,

$$\lim_{\varepsilon \to 0} \left\| E_{\varepsilon} f - \frac{f^{(m+1)}(0)}{(m+1)!} \left(Q - P_{\tilde{w},1} Q \right) \right\|_{(q,\tilde{w},1)} = 0.$$

Using the formula for the remainder of the Lagrange interpolation polynomial, we have

$$f(x) - P_{w,\varepsilon}f(x) = \frac{f^{(m+1)}(\xi_{\varepsilon})}{(m+1)!} (x - x_0(\varepsilon))(x - x_1(\varepsilon)) \cdots (x - x_m(\varepsilon)),$$

where $\xi_{\varepsilon} \in (-\varepsilon, \varepsilon)$. Or else

$$E_{\varepsilon}f(t) = \frac{f^{(m+1)}(\xi_{\varepsilon})}{(m+1)!} \left(t - \frac{x_0(\varepsilon)}{\varepsilon}\right) \left(t - \frac{x_1(\varepsilon)}{\varepsilon}\right) \cdots \left(t - \frac{x_m(\varepsilon)}{\varepsilon}\right).$$

Therefore,

$$\lim_{\varepsilon \to 0} \left(t - \frac{x_0(\varepsilon)}{\varepsilon} \right) \left(t - \frac{x_1(\varepsilon)}{\varepsilon} \right) \cdots \left(t - \frac{x_m(\varepsilon)}{\varepsilon} \right)$$
$$= (t - x_0)(t - x_1) \cdots (t - x_m).$$

Since $|\varepsilon^{-1}x_i(\varepsilon)| \leq 1$, there exists a subsequence $\{\varepsilon_k\}$, such that $\varepsilon_k^{-1}x_i(\varepsilon_k)$ tends to \bar{x}_i ; $\bar{x}_i \leq \bar{x}_{i+1}$. From the equality

$$(t-x_0)(t-x_1)\cdots(t-x_m)=(t-\bar{x}_0)(t-\bar{x}_1)\cdots(t-\bar{x}_m),$$

it follows that $x_i = \bar{x}_i$. This implies the statement that $x_i(\varepsilon) = \varepsilon(x_i + o(1))$. This Remark remains true for $p = \infty$, if we assume the hypotheses of Remark 2.

Remark 4. Given a function f and a weight w, both of them continuous in [-1, 1], it is well known that there exists a Tchebycheff alternation, that is a sequence of m + 2 points $\{x_i(\varepsilon)\}_{i=0}^{m+1}$ contained in $[-\varepsilon, \varepsilon]$, such that

$$[f(x_i(\varepsilon)) - P_{w_i,\varepsilon} f(x_i(\varepsilon))] w(x_i(\varepsilon)) W(\varepsilon)^{-1}$$

assume the value of $||f - P_{w,\varepsilon}f||_{(\infty,w,\varepsilon)}$ in an alternating fashion. We can take $x_i(\varepsilon) < x_{i+1}(\varepsilon)$. Besides, it is clear that there exists at most one Tchebycheff alternation $-1 \le x_0 < x_1 < \cdots < x_{m+1} \le 1$, for $Q - P_{\tilde{w},1}Q$. Following the lines of [4], we consider the error

$$e_{\varepsilon}f(t) \coloneqq \frac{[f(\varepsilon t) - P_{w,\varepsilon}f(\varepsilon t)]}{f(x_i(\varepsilon)) - P_{w,\varepsilon}f(x_i(\varepsilon))} \cdot \left(\frac{w(x_i(\varepsilon))}{W(\varepsilon)}\right)^{-1},$$

where *i* is equal to 0 or 1 and it is chosen in such a way as to make the denominator positive. It turns out that $e_{\varepsilon}f(t)$ is well defined if *f* is not a polynomial of degree *m* restricted to the interval $[-\varepsilon, \varepsilon]$. Then, if $f \in C^{m+1}$ and $f^{(m+1)}(0) \neq 0$, the error $e_{\varepsilon}f$ tends to $(Q - P_{\tilde{w},1}Q)/||Q - P_{\tilde{w},1}Q||_{(\infty,\tilde{w},1)}$ in the norm $L^{\infty}_{\tilde{w},1}$. In fact, as we pointed out in Remark 2, $E_{\varepsilon}f$ tends to $f^{(m+1)}(0)(Q - P_{\tilde{w},1}Q)/(m+1)!$ in $L^{\infty}_{\tilde{w},1}$. On the other hand there exists a subsequence $\{\varepsilon_k\}$ tending to zero, which defines the numbers $\bar{x}_i = \lim_{k \to \infty} x_i(\varepsilon_k)\varepsilon_k^{-1}$. Therefore

$$\pm (Q(\bar{x}_i) - P_{\tilde{w},1}Q(\bar{x}_i)) |\bar{x}_i|^{\beta} = \|Q - P_{\tilde{w},1}Q\|_{(\infty,\tilde{w},1)} > 0.$$

From this it follows that $\{\bar{x}_i\}_{i=0}^{m+1}$ is a Tchebycheff alternation for $Q - P_{\tilde{w},1}Q$. From the uniqueness we obtain that the $\lim_{\epsilon \to 0} x_i(\epsilon) \epsilon^{-1}$ exists and is equal to x_i . This proves the claim.

3. PROOF OF THE RESULTS

We begin by observing some simple facts. Let f^{ε} be defined by $f^{\varepsilon}(t) := f(\varepsilon t)$, then

$$\|f\|_{(p,w,\epsilon)} = \|f^{\epsilon}\|_{(p,w_{\epsilon},1)}.$$
(3.1)

From this and the uniqueness of the polynomial of best approximation, it follows

$$(P_{w,\varepsilon}f)^{\varepsilon} = P_{w_{\varepsilon},1}f^{\varepsilon}.$$
(3.2)

Also, $P_{w,\varepsilon}$ satisfies the homogeneity property:

$$P_{w,\varepsilon}\lambda f = \lambda P_{w,\varepsilon}f, \qquad \lambda \in \mathbb{R}.$$
(3.3)

Let *E* be a real vector space. Assume that there exists a family of norms $\|\cdot\|_{\varepsilon}$, for $0 \leq \varepsilon < 1$, satisfying

$$\lim_{\varepsilon \to 0} \|f\|_{\varepsilon} = \|f\|_{0}, \quad \text{for} \quad f \in E;$$
(3.4)

there exists a C greater than zero and a fixed norm $\|\cdot\|$ such that

$$C^{-1} \|f\| \leq \|f\|_{\varepsilon} \leq C \|f\|,$$

for every f in a finite dimensional subspace M. (3.5)

Under the conditions above, we have:

Let $f \in E$ and let $P_{\varepsilon} f$ be an element of M such that

$$||P - P_{\varepsilon}f||_{\varepsilon} = \inf\{||f - P||_{\varepsilon} : P \in M\}.$$

Assume $P_0 f$ is uniquely determined. Then, $P_{\varepsilon} f$ converges to $P_0 f$ when ε tends to zero. (3.6)

For the proof of Theorem 1, we need the following lemma.

LEMMA 1. Let w be a weight satisfying condition (2.1). Let $P \in \pi^m$ and $1 \leq p < \infty$. Then

$$\left| \|P\|_{(p,w_{\ell},1)} - \|P\|_{(p,\tilde{w},1)} \right| \leq o(1) \|P\|_{(p,\tilde{w},1)},$$

where o(1) depends on n, m, p and the weight w only.

Proof. If we denote by

$$f(\rho) := \int_{|t|=1} |P(\rho t)|^p dt,$$

then

$$I_{\varepsilon} := \|P\|_{(\rho,w_{\varepsilon},1)}^{p} = \varepsilon^{n} W(\varepsilon)^{-1} \int_{|t| \leq 1} |P(t)|^{p} w(\varepsilon t) dt$$
$$= W(\varepsilon)^{-1} \int_{0}^{\varepsilon} \rho^{n-1} w(\rho) f(\rho/\varepsilon) d\rho.$$

An integration by parts gives

$$\begin{split} I_{\varepsilon} &= (\omega_n W(\varepsilon))^{-1} W(\rho) f(\rho/\varepsilon) |_0^{\varepsilon} - (\varepsilon \omega_n W(\varepsilon))^{-1} \int_0^{\varepsilon} W(\rho) f'(\rho/\varepsilon) \, d\rho \\ &= \omega_n^{-1} f(1) - (\varepsilon \omega_n W(\varepsilon))^{-1} A \int_0^{\varepsilon} \rho^{\beta+n} f'(\rho/\varepsilon) \, d\rho \\ &+ (\varepsilon W(\varepsilon))^{-1} \int_0^{\varepsilon} o(\rho^{\beta+n}) f'(\rho/\varepsilon) \, d\rho \\ &=: J_1 + J_2 + J_3. \end{split}$$

Another integration by parts lead us to

$$J_{2} = -(\varepsilon \omega_{n} W(\varepsilon))^{-1} \varepsilon f(\rho/\varepsilon) A \rho^{\beta+n} |_{0}^{\varepsilon}$$
$$+ (\omega_{n} W(\varepsilon))^{-1} A(\beta+n) \int_{0}^{\varepsilon} f(\rho/\varepsilon) \rho^{\beta+n-1} d\rho$$
$$= -J_{1}(1+o(1)) + \omega_{n}^{-1}(\beta+n) \int_{0}^{1} f(\rho) \rho^{\beta+n-1} d\rho \cdot (1+o(1)).$$

Then

$$J_1 + J_2 = J_1 o(1) + \|P\|_{(p,\tilde{w},1)}^p (1 + o(1)).$$

On the other hand

$$f'(\rho) = p \int_{|t|=1} |P(\rho t)|^{p-1} sg(P(\rho t))(\nabla P)(\rho t) \cdot t dt.$$

Using the Markov inequality, we have

$$|f'(\rho)| \leq C \max_{|t| \leq 1} |P(t)|^p = C ||P||^p,$$

where $0 \leq \rho < 1$ and the constant C does not depend on P.

Since $||P|| \leq C ||P||_{(p,\tilde{w},1)}$, for some $C = C(n, m, p, \tilde{w})$, we get

 $|J_3| \leq o(1) ||P||_{(p,\tilde{w},1)}^p$

Similarly

$$|J_1| \leqslant C \, \|P\|_{(p,\tilde{w},1)}^p.$$

Collecting estimates we obtain

$$|I_{\varepsilon} - \|P\|_{(p,\tilde{w},1)}^{p}| = |o(1)J_{1} + o(1)\|P\|_{(p,\tilde{w},1)}^{p} + J_{3}|$$

$$\leq o(1)\|P\|_{(p,\tilde{w},1)}^{p}. \quad \blacksquare$$

From Lemma 1 it follows immediately the equivalence among the norms $\|\cdot\|_{(p,w_{\varepsilon},1)}$ and $\|\cdot\|_{(p,\tilde{w},1)}$ on the class π^m , independently of ε . For future references we establish

Let $P \in \pi^m$. Then, there exists a constant C independent of P and ε such that

$$C^{-1} \|P\| \leqslant \|P\|_{(p,w_{E},1)} \leqslant C \|P\|, \qquad (3.7)$$

where

$$||P|| := \max_{|t| \leq 1} |P(t)|.$$

This last remark allows us to show that given a function f in $t_{m,w}^p$ the polynomial $T_m \in \pi^m$ such that

$$\|f - T_m\|_{(p,w,\varepsilon)} = o(\varepsilon^m),$$

is unique. In fact, calling P the difference between two such polynomials, then $||P||_{(p,w,\varepsilon)} = o(\varepsilon^m)$. But, taking into account (3.1) and (3.7) we have $||P|| = o(\varepsilon^m)$, which implies P = 0.

Proof of Theorem 1. Since $\Phi_{m+1}(x) := T_{m+1}(x) - T_m(x) = \sum_{|\alpha|=m+1} C_{\alpha} x^{\alpha}$, is homogeneous of degree m+1 and using (3.2) and (3.3) it follows

$$E_{\varepsilon}\boldsymbol{\Phi}_{m+1} = \boldsymbol{\Phi}_{m+1} - P_{w_{\varepsilon},1}\boldsymbol{\Phi}_{m+1}.$$

In order to proof the convergence of this error, we observe that by (3.7) $\|\cdot\|_{(p,w_{\varepsilon},1)}$ and $\|\cdot\|$ considered on the class π^{m+1} are equivalent independently of ε . Besides, by Lemma 1, $\|P\|_{(p,w_{\varepsilon},1)}$ converges to $\|P\|_{(p,\tilde{w},1)}$ when ε tends to zero. Therefore by using (3.6) with $E = \pi^{m+1}$ and $M = \pi^m$ we have $\|P_{w_{\varepsilon},1}\Phi_{m+1} - P_{\tilde{w},1}\Phi_{m+1}\|$ goes to zero for ε tending to zero. Hence

$$\lim_{\varepsilon \to 0} \|E_{\varepsilon} \boldsymbol{\Phi}_{m+1} - (\boldsymbol{\Phi}_{m+1} - P_{\tilde{w},1} \boldsymbol{\Phi}_{m+1})\| = 0.$$
(3.8)

Setting $R_{m+1} = f - T_{m+1}$ and since N_e is sublinear, we get

$$|N_{\varepsilon}f - N_{\varepsilon}T_{m+1}| \leq N_{\varepsilon}R_{m+1}.$$

From (3.8), using that $N_{\varepsilon}T_{m+1} = N_{\varepsilon}\Phi_{m+1}$ and

$$N_{\varepsilon}R_{m+1} \leqslant \varepsilon^{-m-1} \|f - T_{m+1}\|_{(p,w,\varepsilon)} = o(1),$$

we obtain

$$\lim_{\varepsilon \to 0} N_{\varepsilon} f = \| \boldsymbol{\Phi}_{m+1} - \boldsymbol{P}_{\tilde{w},1} \boldsymbol{\Phi}_{m+1} \|_{(p,\tilde{w},1)},$$

which proves (2.2).

In order to show the second part of the theorem we write

$$E_{\varepsilon}f = \varepsilon^{-m-1}(f^{\varepsilon} - T_m^{\varepsilon}(f)) - H_{\varepsilon},$$

where $H_{\varepsilon} := \varepsilon^{-m-1} P_{w_{\varepsilon},1}(f^{\varepsilon} - T_m^{\varepsilon})$. We have the following direct estimate for H_{ε}

$$\|H_{\varepsilon}\|_{(p,w_{\varepsilon},1)} \leq N_{\varepsilon}f + \varepsilon^{-m-1} \|f - T_{m}\|_{(p,w,\varepsilon)}$$
$$\leq 2\varepsilon^{-m-1} \|f - T_{m+1}\|_{(p,w,\varepsilon)} + 2\sum_{|\alpha|=m+1} |C_{\alpha}|$$

Since $f \in t^p_{m+1,w}$, we have that $\|H_{\varepsilon}\|_{(p,w_{\varepsilon},1)}$ is bounded in ε . By (3.7) $\|H_{\varepsilon}\|$ is also bounded in ε . Therefore, there exists a subsequence ε_k , tending to zero, and a polynomial $H \in \pi^m$ such that H_{ε_k} tends to H. We shall show that H_{ε} converges itself, by proving that the polynomial H does not depend on the particular subsequence chosen. In fact, from the equality

$$E_{\varepsilon}f - \boldsymbol{\Phi}_{m+1} + H = \varepsilon^{-m-1}R_{m+1}^{\varepsilon}(f) + H - H_{\varepsilon},$$

it follows that

$$\lim_{k \to 0} \|E_{\varepsilon_k} f - (\Phi_{m+1} - H)\|_{(p, w_{\varepsilon_k}, 1)} = 0.$$
(3.9)

Now, for $P \in \pi^{m+1}$, we have

$$\begin{split} \|E_{\varepsilon}f\|_{(p,w_{\varepsilon},1)} &= \varepsilon^{-m-1} \|f^{\varepsilon} - T^{\varepsilon}_{m}(f) - P_{w_{\varepsilon},1}(f^{\varepsilon} - T^{\varepsilon}_{m}(f))\|_{(p,w_{\varepsilon},1)} \\ &\leq \varepsilon^{-m-1} \|f^{\varepsilon} - T^{\varepsilon}_{m}(f) - \varepsilon^{m+1}P\|_{(p,w_{\varepsilon},1)} \\ &= \|\varepsilon^{-m-1}(f^{\varepsilon} - T^{\varepsilon}_{m+1}(f)) + \boldsymbol{\Phi}_{m+1} - P\|_{(p,w_{\varepsilon},1)}. \end{split}$$

From this, (3.9) and Lemma 1 we get

 $\left\|\boldsymbol{\varPhi}_{m+1}-\boldsymbol{H}\right\|_{(p,\tilde{w},1)}\leqslant \left\|\boldsymbol{\varPhi}_{m+1}-\boldsymbol{P}\right\|_{(p,\tilde{w},1)}.$

The inequality above assures us the existence of the limit of H_{ε} and that it is equal to $P_{\tilde{w},1}\Phi_{m+1}$. Therefore (3.9) it is also true when the limit is taken for ε going to zero.

The proof of theorem 2 is an easy consequence of the following lemma.

LEMMA 2. Let u and w be weights such that both of them belong to ah(s)for some $1 < s < \infty$. Moreover, suppose $w \in a(r)$ for some $1 < r < \infty$. If 1 and <math>q = p/s'r, then

$$\|f\|_{(q,u,\varepsilon)} \leqslant C \,\|f\|_{(p,w,\varepsilon)},$$

for $0 < \varepsilon < 1$ and a constant C independent of f and ε .

Before going into the details of the proof we note that Lemma 2 allows us to transfer the smoothness property with weight w to an analogous property with weight u. More precisely, with the notation of Lemma 2, if $f \in t_{m,w}^p$ then $f \in t_{m,u}^q$.

Proof. Denote $I := ||f||_{(q,u,\varepsilon)}^q$, then

$$I \leq ||f||_{(q,w,\varepsilon)}^{q} + \int_{|t| \leq \varepsilon} |f|^{q} |W(\varepsilon)^{-1} w(t) - U(\varepsilon)^{-1} u(t)| dt$$

= $I_{1} + I_{2}$.

We estimate I_2 , by using Hölder inequality

$$I_{2} \leq \left[\int_{|t| \leq \varepsilon} |f|^{qs'} dt \right]^{1/s'} \cdot \left[\int_{|t| \leq \varepsilon} |W(\varepsilon)^{-1} w(t) - U(\varepsilon)^{-1} u(t)|^{s} dt \right]^{1/s}$$

=: $I_{3} \cdot I_{4}$.

From the fact that w and u satisfy (2.6), it results that

$$I_4 \leqslant C \varepsilon^{-n/s'}$$
.

By (2.5) and Hölder inequality, we get

$$I_{3} \leq \|f\|_{(p,w,\varepsilon)}^{q} \cdot \left(\int_{|t| \leq \varepsilon} \left(W(\varepsilon)^{-1} w(t) \right)^{-r'/r} dt \right)^{1/s'r'} \leq C \|f\|_{(p,w,\varepsilon)}^{q} \cdot \varepsilon^{n/s'}.$$

Therefore,

$$I_2 \leqslant C \, \|f\|^q_{(p,w,\varepsilon)}.$$

Since $||f||_{(q,w,\varepsilon)}$ is less than or equal to $||f|_{(p,w,\varepsilon)}$, the lemma is proved.

Proof of Theorem 2. From the proof of Theorem 1, we can write the equality

$$E_{\varepsilon}f - \Phi_{m+1} + P_{\tilde{w},1}\Phi_{m+1} = \varepsilon^{-m-1}R_{m+1}^{\varepsilon}(f) + P_{\tilde{w},1}\Phi_{m+1} - H_{\varepsilon}.$$

Since $\tilde{w} \in ah(s)$ for any $s, 1 < s < \infty$, and H_{ε} converges to $P_{\tilde{w},1} \Phi_{m+1}$, this equality and Lemma 2 yield the Theorem.

References

- 1. A. P. CALDERÓN AND A. ZYGMUND, Local properties of solution of elliptic partial differential equations, *Studia Math.* 20 (1961), 171-225.
- 2. C. K. CHUI, P. W. SMITH, AND J. D. WARD, Best local L_2 approximation, J. Approx. Theory 22 (1978), 254–261.
- 3. G. FREUD, Eine Unglerchung für Tschebyscheffsche Approximations polynome, Acta Sci. Math. Szeged 19 (1958), 162–169.
- H. MAEHLY AND CH. WITZGALL, Tschebyscheff-Approximationen in kleinen Intervallen I, Numer. Math. 2 (1960), 142–150.
- 5. B. MUCKENHOUPT, "Weighted Norm Inequalities for Classical Operators," Proc. Symps. Pure Math., Vol. 35, pp. 69–83, Amer. Math. Soc., Providence, R. I., 1979.
- 6. J. R. RICE, "The Approximation of Functions," Vol. I and II, Adison-Wesley, Reading, Mass., 1964 and 1969.
- 7. J. M. WOLFE, Interpolation and best L_p local approximation, J. Approx. Theory 32 (1981), 96–102.